Clustering with Bregman Divergences: an Asymptotic Analysis
نویسندگان
چکیده
Clustering, in particular k-means clustering, is a central topic in data analysis. Clustering with Bregman divergences is a recently proposed generalization of k-means clustering which has already been widely used in applications. In this paper we analyze theoretical properties of Bregman clustering when the number of the clusters k is large. We establish quantization rates and describe the limiting distribution of the centers as k →∞, extending well-known results for k-means clustering.
منابع مشابه
Clustering with Bregman Divergences
A wide variety of distortion functions, such as squared Euclidean distance, Mahalanobis distance, Itakura-Saito distance and relative entropy, have been used for clustering. In this paper, we propose and analyze parametric hard and soft clustering algorithms based on a large class of distortion functions known as Bregman divergences. The proposed algorithms unify centroid-based parametric clust...
متن کاملNon-flat Clusteringwhith Alpha-divergences
The scope of the well-known k-means algorithm has been broadly extended with some recent results: first, the kmeans++ initialization method gives some approximation guarantees; second, the Bregman k-means algorithm generalizes the classical algorithm to the large family of Bregman divergences. The Bregman seeding framework combines approximation guarantees with Bregman divergences. We present h...
متن کاملAgglomerative Bregman Clustering
This manuscript develops the theory of agglomerative clustering with Bregman divergences. Geometric smoothing techniques are developed to deal with degenerate clusters. To allow for cluster models based on exponential families with overcomplete representations, Bregman divergences are developed for nondifferentiable convex functions.
متن کاملSubmodular-Bregman and the Lovász-Bregman Divergences with Applications: Extended Version
We introduce a class of discrete divergences on sets (equivalently binary vectors)that we call the submodular-Bregman divergences. We consider two kinds ofsubmodular Bregman divergence, defined either from tight modular upper or tightmodular lower bounds of a submodular function. We show that the properties ofthese divergences are analogous to the (standard continuous) Bregman d...
متن کاملSymmetrized Bregman Divergences and Metrics
While Bregman divergences [3] have been used for several machine learning problems in recent years, the facts that they are asymmetric and does not satisfy triangle inequality have been a major limitation. In this paper, we investigate the relationship between two families of symmetrized Bregman divergences and metrics, which satisfy the triangle inequality. Further, we investigate kmeans-type ...
متن کامل